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Abstract

Motivated by the need to develop more informative and data-rich patient-specific presurgical planning models, we
present a high-resolution method that enables the tangible replication of multimodal medical data. By leveraging
voxel-level control of multimaterial three-dimensional (3D) printing, our method allows for the digital integration of
disparate medical data types, such as functional magnetic resonance imaging, tractography, and four-dimensional
flow, overlaid upon traditional magnetic resonance imaging and computed tomography data. While permitting the
explicit translation of multimodal medical data into physical objects, this approach also bypasses the need to process
data into mesh-based boundary representations, alleviating the potential loss and remodeling of information. After
evaluating the optical characteristics of test specimens generated with our correlative data-driven method, we cul-
minate with multimodal real-world 3D-printed examples, thus highlighting current and potential applications for
improved surgical planning, communication, and clinical decision-making through this approach.
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Introduction

Medicine has long relied on tangible objects to provide
clinical insights about disease states, which can be traced back
thousands of years to the use of stone and clay models.1

However, since the discovery of X-rays by Wilhelm Röntgen in
1895, diagnostic anatomical representations have been domi-
nated by the use of penetrating radiation-based two-
dimensional (2D) medical imaging technologies. Modern

approaches to diagnostic medicine now rely on a wide range of
digital data obtained from magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography,
and ultrasound. Through the generation of 3D representations,
these approaches map, process, and represent data with the aim
of allowing doctors to gather insights and form diagnoses
through sequential multimodal correlative observations.

As these technologies have continued to evolve, medical
imaging has since separated into multiple subspecialties,
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each focused on a discrete biological function within a dis-
tinct imaging modality. These approaches, which combine
the use of application-specific imaging approaches and data-
processing technologies, can reveal levels of anatomical
detail not previously attainable. For example, cardiovascular
magnetic resonance (CMR) has become the only method for
the detection of heart muscle scarring,2 whereas coronary
computed tomography angiography best shows the perfusion
of cardiac vessels.3 The gap between medical imaging spe-
cialties has been further institutionalized and exacerbated by
divergent tools, methods, and conceptual frameworks sur-
rounding these distinct imaging modalities.

As a result, surgical planning frequently requires the sequential
and chronological review of multiple sources of discrete 2D im-
aging data in preparation for invasive surgical interventions. The
collected imaging data are typically viewed on 2D computer
screens, thus requiring significant visuospatial memory from the
user. The presurgical data review process has thus become in-
creasingly inefficient, and as such, does not provide a holistic
visualization of the data, a factor that has been deemed critical for
informed surgical preparation.4 This worrisome trajectory ignores
the biggest promise of the information revolution: increased
clarity, communication, connectivity, and interoperability.

In recent years, three-dimensional (3D)-printed models
have emerged as valuable tangible diagnostic tools for surgical
planning and have been shown to reduce operating time and
surgical complications.5 Although conventional screen-based
media visualizations are known to be effective, it has been
argued that physical manifestations of data can leverage active
and spatial perception skills, enabling a more comprehensive
understanding of presented information in an inherently intu-
itive manner.6–8 In addition to relieving the burden on vi-
suospatial memory, 3D models have been shown to more
accurately portray scale and proportion, a critical element to
biomedical applications.9,10 Despite these advantages, the
most commonly employed additive manufacturing workflows,
which rely on the use of mesh-based data, are fundamentally
limited by an assembly paradigm that dates back to the In-
dustrial Revolution, reinforced by digital modeling software,
which renders printed objects as solid, homogeneous, and
isotropic approximations of their source data.

As a result of these limitations, 3D printing for presurgical
planning has been traditionally limited to CT-derived boney
structures (excluding the comparatively lower density trabec-
ular bone networks) and gross morphological descriptions of
complex organs from MRI data, which have been shown to
often lack critical anatomical details.11 When considering soft
tissue applications, the interior of the region of interest typi-
cally consists of multiple tissue structures that combine with
biological dynamics to provide diagnostic physiological
markers. As such, volumetric information and dynamic phys-
iological data are critical to understanding the potential for
interventional complications, and current modeling and 3D
printing methods, unfortunately, do not reflect this complexity.

In recent years, an increased clinical interest has emerged in
transcending morphological structures (form) to include
physiological data (function) in preparation for surgical cases,
as evidenced by the increase in software focused on visualizing
dynamic medical data.12,13 A subfield of Radiology called
medical imaging computing (MIC) has grown, creating new
techniques and forms of representation that derive the dynamic
components of living matter from standard MRI and CT

through advanced computational algorithms.14 MIC focuses on
extrapolating physiological data from diagnostic images
through advanced data processing techniques, including four-
dimensional (4D) flow cardiovascular magnetic resonance
(4DCMR), functional magnetic resonance imaging (fMRI),
diffusion weighted imaging (DWI), diffusion tensor imaging
(DTI), and stereoelectroencephalography.14

Attempts at 3D printing these complex data sets have pro-
duced gross approximations with the limited translation of the
data into a printed form, despite showing clinical benefit.15,16

These limitations exist because the predominant 3D printing
methods utilize a surface mesh-based paradigm, which makes
the compositing of data challenging due to the need for inten-
sive Boolean operations. Additionally, many commercially
available additive manufacturing methods are incapable of
capturing the level of special fidelity, soft tissue differentiation,
and spatial/contrast resolution required to comprehensively
translate computational data sets into 3D-printed tangible
models. Since the emergence of 3D printing as a new diagnostic
tool for presurgical planning, it has not yet fully realized the
extent of printable data from computational imaging technol-
ogies.17,18 The ability to successfully do so, however, could
expand the use of diagnostic physical representations of patient-
specific anatomy to include integrated physiological data, thus
creating new opportunities for improving patient care in a much
broader range of complex and challenging surgical cases.

In contrast to the surface mesh-based methods described
above, in this study, we present a 3D printing workflow that
utilizes voxel-based bitmap printing technologies to collate
disparate biomedical imaging methods and data into one unified
diagnostic tool. Our approach renegotiates boundaries, fills gaps,
and facilitates overlaps between disconnected medical imaging
technologies to provide a physician with a curated, concise, and
coherent physical model that integrates all available data. By
creating this new tangible user interface, we are applying a wide
range of new technologies to reclaim and bring over 1000 years
of medical history and training into the 21st century. In doing so,
these correlative data visualization approaches are anticipated to
further reduce operating times, improve postsurgical outcomes,
and most importantly, allow for more complex and challenging
operations to be confidently performed.

In the present study, we have explored two examples that
leverage a wide range of different advanced MIC technolo-
gies, including CT, MRI, cardiac 4D-MRI, and neurological
tractography with fMRI, and blood oxygen level-dependent
(BOLD) MRI. Using these diverse independent imaging data
types, we present a series of methods for extracting, fusing,
and editing MIC data into bitmap-based 3D-printed models
and evaluate their potential for specific clinical applications:

1. Neuroimaging: Neuroimaging is an integral prerequisite
for neurosurgical procedures since most involve intri-
cate, minute anatomical structures that cannot be out-
wardly observed.19 When planning to resect a brain
tumor, for example, neurosurgeons must consider both
brain anatomy and function in different areas of the gray
matter. While previous attempts have been made to
represent fMRI data through 3D printing, these models
have primarily been limited to opaque surface-colored
solid models or have been used to visualize individual
isolated elements, which disregard their spatial rela-
tionships to other anatomical features.20,21 In a recent
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effort to address some of these data resolution-related
limitations, the successful 3D printing of high-resolution
diffusion tractography data using voxel printing methods
as defined by Bader et al.22 has been successfully dem-
onstrated. To further improve the utility of these high-
resolution and single-data source anatomical models, the
methods described in our present study integrate fMRI,
tractography, and T1 MRI data and are curated for spe-
cific clinical applications.20,21

2. CMR: 4DCMR has enabled a more comprehensive
assessment of pulsatile blood flow through cavities of
the heart and the great vessels. 4DCMR refers to phase-
contrast CMR with flow-encoding in all three spatial
directions, as a function of time, along the cardiac cycle
(3D+time = 4D). Developed through collaborations with
physicists, physicians, and biomedical engineers,
4DCMR enables a wide variety of options for visuali-
zation and quantification of flow, ranging from primary
metrics, such as flow volume and peak velocity, to more
advanced features such as the estimation of hemody-
namic effects at the vessel wall and myocardium, or the
visualization of flow pathways in the heart and great
vessels. While previous attempts to visualize these pro-
cesses using 3D printing-based approaches have em-
ployed computational fluid dynamics to simulate blood
flow,23 these attempts have utilized Standard Tessella-
tion Language-based modeling workflows, which as
mentioned in the previous section, provide only a limited
approximation of the inherently complex source data.

As demonstrated through these two case studies, our
methods for creating tangible models of multimodal medical
imaging data through bitmap-based 3D printing enable the
direct, yet curated, digital manufacturing of numerous dy-
namic and computationally derived medical data sets. These
methods and their various applications can thus unify numer-
ous discrete medical imaging modalities of morphological and
physiological data into one coherent, comprehensive, and
concise physical object for use in presurgical planning.

Materials and Methods

An overview of our methodology is shown in Figure 1. Di-
gital Imaging and Communications in Medicine (DICOM) data
were acquired from MRI and CT instruments, providing the
morphological and base data from which functional informa-
tion was computationally derived. All data sets were acquired
from living patients, during one or more imaging sessions, and
all the resulting digital models were subsequently co-
registered. Color-encoded mesh data derived from the different
imaging sessions, and processed across multiple software
programs, utilized a common coordinate system, guaranteeing

data alignment across platforms. DICOM files were first pro-
cessed with the open-source 3D Slicer software package24,25

and window/level adjustments, and histogram processing was
completed similar to that described by Hosny et al.24,25

In our data processing workflow, a voxel field was created,
which defined the print volume bounding box voxel resolu-
tion and channel descriptions based on those derived from the
source data. A multichannel voxel model data structure was
then used to convert scalar values into volumetric represen-
tations with graded material properties.

In this multistep process, a thresholding technique was first
employed to construct a volumetric model by setting the geo-
metric channel to solid if a voxel within the field was occupied
by the computed imported data, and voxels within the field not
containing data were set to void (Fig. 1A, B). A second chan-
nel, the color channel, assigned the color material mixing ratio
for each solid voxel. Color mixing ratios were derived from the
imported data, similar to Bader et al.,22 which included image-
based data sets, such as MRI and CT, and point clouds derived
from dynamic physiological information (Fig. 1D–F). When
compositing multiple imported data types, one or both channels
were overlaid in a hierarchical structure. The resulting com-
posite voxel model was then dithered into colored droplet de-
position descriptions to match colored resins used by the
multimaterial inkjet-based (polyjet) 3D printer (Stratasys J750)
and saved to a 32-bit raster graphic format (Fig. 1G, H).

During the data processing step, several aspects of the printer
hardware must be taken into consideration to obtain the desired
result. For example, commercially available colored polyjet
materials exhibit varying levels of translucency (Fig. 2). As
noted in Bader et al.,22 colored objects with a material mixing
ratio of more than 70% clear showed variability in translucency
(Fig. 2B), whereas colored objects in the 70–95% range provide
a greater level of control over subtle differences in transparency
(Fig. 2C). This phenomenon must be taken into account for the
visualization of volumetric data since a linear mapping from
material information to material mixing will not yield linear
changes in perceivable transparency or translucency.

By leveraging this tunability in compositionally specific
optical transparency, our method is capable of showing em-
bedded features within objects that exhibit variation in color
to indicate differences in tissue densities revealed through CT
or MR-based imaging techniques. To effectively visualize
the features of interest in a case-specific manner, several key
aspects of the data must be taken into consideration when
assigning material-mixing ratios during data compositing and
model printing. For example, to ensure visual clarity of
opaque embedded objects, the segmented background vol-
ume must remain transparent, while still maintaining the
color saturation required to convey spatial relationships
within the differentiated soft tissues. This effect can be

‰
FIG. 1. General workflow for the conversion and compositing of multimodal data sets into 3D-printed tangible objects. For a
given data set (A), a volume rendering is computed directly from the image-derived intensity values (B). User-defined colors
are then placed at specific intensity values to remap the volume rendering, and a secondary channel is modified to define the
transparency of the remapped intensity values (C). Additional image-based data are processed similarly to and overlaid upon
(C) where the additional color data can be specified (if desired) to supersede the previous model voxel color transparency, and
intensity values (D). Color density vector data are deconstructed to extract color data stored in vertices. The imported mesh is
then filled with voxels, where each voxel inherits the color of the nearest vertex (E). (F) The resulting vector-based data are
overlaid with the previous composited data generated in (C) and supersede the color data similar to (D). To generate per-pixel
material information, the volume-rendered model is dithered to reduce the colors in the model to those available within the 3D
printer (G). (H) Finally, the dithered volume rendering is sliced to the requirements of the 3D printer. 3D, three-dimensional.
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achieved by adjusting the ratios of clear to colored materials
to produce predictable, visually coherent, results (Fig. 2D–F).
However, due to the nature of the dithering process, refining
the predictability of matching the computer rendering to a 3D
bitmap-printed object can be nonintuitive (Fig. 2B, C), and as
such, is an area of ongoing research.

Once the different features of interest have been com-
posited within the 3D-printable volume, the volume was

sliced into a an image stack using a custom code to generate
full-color PNG files in concordance with the requirements
for ‘‘Voxel Printing’’ on a Stratasys j750 3D printer.26

VeroClear (RGD810) was used as the transparent material,
whereas VeroPureWhite (RGD837), VeroBlackPlus
(RGD875), VeroYellow (RGD836), VeroCyan (RGD841),
and VeroMagenta (RGD851) were used to depict the col-
ored regions.

FIG. 2. Variability in optical transparency as a function of pigment composition and data compositing resin mixing ratios.
(A) Cross-sectional diagram of the (B, C) material coupons demonstrating the variability in opacity (decreasing clear resin
fraction, from left to right) of different colored resins due to their unique pigment compositions (C: Cyan, M: Magenta, Y:
Yellow, B: Black, W: White, C: Clear). From these data, it is apparent that translucency characteristics are not uniform
across the different colored resins, can vary significantly depending on the direction of ambient lighting (reflected vs.
transmitted illumination), and are not linearly related to material mixing ratios. (D) A representative single data slice
demonstrates the different optical effects that can be generated via different material mixing ratios produced through
material dithering. (E, F) Comparison of identical digital models 3D printed using either Black/Cyan/Clear (left) or
Magenta/Yellow/Clear (right) material droplets of opaque and transparent material and photographed via either reflected (E)
or transmitted (F) illumination. The backlit image shown in (F) contains an underlying array of parallel black lines, which
was used to demonstrate the variation in transparency across the material mixing combinations of this single-layer bitmap
print. The resulting dramatic differences in optical effects can be leveraged to preferentially reveal specific anatomical
details of interest; for example, (1a) inferior temporal gyrus; (1b) cuneus; (1c) posterior limb of the internal capsule; (2a)
occipital horn of the lateral ventricle; (2b) cuneus; (2c) globus pallidus; (2d) medial frontal gyrus (E).
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Results

Case study 1: 4DCMR

Two 4DCMR data sets were utilized to demonstrate the
versatility of our method (Figs. 3 and 4). The first data set was
acquired from a healthy adult, whereas the second was from a
4.5-year-old child with a rare congenital heart defect. Both
patients provided the required informed consent for publi-
cation, and surgeons were consulted throughout the data
processing process to ensure that the features of interest were
accurately conveyed in the 3D-printed models.

Similar to the methods described by Dyverfeldt et al.,12

digital 3D streamline models were created and processed
with the Circle Cardiovascular Imaging Cardiac MRI soft-
ware (CircleCVI)27 and exported using the Polygonal File
Format (PLY), a mesh-based model that incorporates vertex
color. In this multistep process, the cardiac blood pool was
first segmented to produce a single homogeneous solid object
using a thresholding mask, which was applied to the original
MRI image stack from which the 4D CMR data were gen-
erated. The streamline PLY data were then overlaid on the
solid blood pool model, where information about color,
streamline diameter, and cross-sectional shape (e.g., circular,
triangular, square) could be modified.

The PLY surface mesh file was next converted to a Volume
Database (VDB) file, hierarchically storing voxel data in a
tree-like data structure with similarity (Museth, 2013) to
B+trees, where a volume was created by filling the streamline
boundary surface with RGB-colored voxels at a resolution
determined through explicit controls to match that of the
3D printer. This process involved the creation of a distance
field to determine the specific location of each voxel relative
to the position of its corresponding mesh vertices in the PLY
file.

The generation of the image slice stack from the region of
interest (ROI) was completed in a manner similar to that em-
ployed by Hosny et al.25 This method utilized a fully open
source approach, resulting in a computationally low and a
comparably fast process for slice generation. Models that uti-
lize a singular data source, or in our case, two data sources
where only one model contains graded volumetric data, benefit
from this method due to the ease of dithering. In this process,
the composited 3D model was first subdivided into 30-lm-
thick data blocks. A virtual camera was then centered above
each sliced data block, at a height that corresponded to half the
radius of the ROI. Then, a PNG image file was saved for each
data block (corresponding to a single data slice) from the
virtual camera at a resolution dictated by the 3D printer’s
specifications. Each of the resulting 32-bit raster images was
then dithered using a local perceptual algorithm to quantize the
pixels into separate material droplet descriptions, each corre-
sponding to a specific resin color within the 3D printer.

For the case of the heart model shown in Figure 4, the
perceived streamline color saturation was directly related to
their corresponding thickness, and to best illustrate this point,
two different versions were produced by varying the isosur-
face offset controls, one with a thickness of 6 pt, and one with
a thickness of 0.25 pt, to demonstrate the trade-offs between
local feature resolution and global color saturation (Fig. 3B,
E). As shown in Figure 3B, streamlines with a diameter of
6 mm produced a vivid visualization of color, but these
thicker lines decreased the visual depth of the model.

By contrast, streamlines with a diameter of 0.1 mm were
visually perceptible as lines; however, differences in color
were barely discernible, or appeared muted (Fig. 3E, F).
These trade-offs, between linewidth and color saturation
(which can be easily tuned by the user), must be taken into
account for the visualization of streamlines and balanced
with the visual depth requirements for each patient in a case-
by-case manner. Recent advances in the development of
transparent colors, however, are leading to solutions to mit-
igate issues related to the oversaturation, allowing for the
ability to achieve transparency without requiring dithering
with transparent materials.

Case study 2: DWI white matter tractography with fMRI

Our second case study involved a neuroimaging data set
containing acquisitions for T1-weighted MRI, DWI, and
fMRI. This retrospective data set (acquired from open source
sample data) was acquired from a 6-year-old child with
an eloquent-area brain lesion. Since all imaging was de-
identified and not used clinically, the requirement for indi-
vidual informed consent was waived.

fMRI is an imaging technique to detect areas of the brain,
which is active at a given time and was used in this case to
clearly label the area responsible for speech near the brain
lesion (Fig. 5D–G). BOLD imaging is a common method to
gather fMRI data since it can be acquired on conventional MRI
scanners.28 In our multistep process, the fMRI data were first
imported as an 8-bit DICOM stack of 2D monochrome images,
similar to the MRI data processing workflow described for
case study 1. The resulting fMRI volume (Fig. 5E) was over-
laid upon the whole-brain MRI data set (Fig. 5B) with refer-
ence to a pre-established color channel hierarchy, where the
fMRI color channel replaced that of the MRI geometric data, to
visualize the fMRI features of interest clearly.

In this process, the fMRI intensity values were remapped
to colors through a user-defined lookup table that was chosen
to emphasize the active regions. Because of the complexities
of surface and subsurface scattering as noted in Bader et al.,22

our data processing workflows did not initially predictively
translate into a representative physical object. An iterative
process was therefore employed to calibrate our digital vi-
sualizations with the 3D printed physical object, which
proved valuable for all subsequent 3D prints.

DWI is a noninvasive medical imaging modality that relies
on the diffusion of water molecules inside tissues for the
visualization of neurological structures.29 DTI is the output
from a mathematical operation on an 8-bit DWI image stack
and computes the distribution and major orientation of gra-
dient directions in each voxel of the target tissue. Parameters
that are derived from tensors in DTI can be visualized as 256-
bit scalar voxel data, with vector field information consisting of
X, Y, Z, and i, j, k values. These DTI tractography fiber data can
be visualized and stored as a VTK file, which consists of a
defined number of lines, where each line contains a unique
identifier index value. Each of these lines consists of a number
of spatial points that hold information about principal diffusion
gradients, each of which is saved as a 3 · 3 tensor unit con-
taining three eigenvectors and its integrated directionality,
which are used to color-encode the fiber lines.

To illustrate this workflow, a 170 image, 256 bit T1 MRI
data set with 1 mm isotropic resolution of a pediatric brain
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FIG. 3. 4D flow processing workflow and representative 3D-printed models from 4D flow data. From the input DICOM data (A),
the blood pool is segmented via an intensity value thresholding step to define the volume in which the streamline data are embedded
(B). (C) The PLY streamline data are then imported and overlaid upon the blood pool segmentation created in (B). The PLY
streamline mesh data are subsequently deconstructed to extract the color information stored in the vertices (D). (E) The PLY mesh
is next infilled with voxels that inherit the color of the nearest vertex to achieve a final specified streamline thickness. Finally, the
streamline color data are composted with the blood pool segmentation and supersede the pre-existing color data from the
background volume (F). (G–I) A 3D-printed model of a 4D cardiovascular magnetic resonance scan of blood flow through a
healthy adult heart, with streamlines visualizing the flow direction, which are color-coded based on velocity. 4D, four-dimensional.

861



FIG. 4. Exploring trade-offs between color saturation and data resolution during 4D flow visualization in 3D-printed
models. Here, we explore the blood pool geometry of a 4.5-year-old child exhibiting dextrocardia with atrial situs solitus, an
imperforate tricuspid valve, a double inlet LV, a large VSD, a double outlet right ventricle, a hypoplastic RV, malposed
great vessels, a right aortic arch status post-Blalock–Taussig shunt, and a main pulmonary artery division with a bidirec-
tional Glenn. (A) A digital computational model of 4D flow from a single frame in the cardiac cycle, 30% diastole (upper),
and a cross-sectional slice of the digital model demonstrating the interior geometry of the streamlines, and the related
streamline thicknesses for each respective model in B, C and D, E (lower). (B) Photograph of a bitmap-printed model from
the same digital file to clearly illustrate the large-scale variation in flow velocity (streamline diameter: 6.0 pt.). (C)
Magnified view of the 3D-printed model shown in (B), with the streamlines in this example globally adjusted to maximize
color saturation. (D, E) Photograph of a bitmap-based 3D-printed model, where streamline thickness was adjusted to clearly
visualize the individual streamlines throughout the entire printed volume. Despite the increased spatial resolution of this
model compared with the one shown in (B) and (C), the streamline diameter (0.25 pt. thickness) is such that variation in
color is barely discernible. LV, left ventricle; RV, right ventricle; VSD, ventricular spetal defect.
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FIG. 5. Neurosurgical multimodal data processing workflow and representative 3D-printed models from volumetric and
vector-based data sets. (A) A T1 MRI data set is masked and thresholded to isolate the brain tissue and visualized as a
volume rendering (B). From the resulting masked brain data shown in (B), user-defined colors are placed at luminosity
values relating to the specific density ranges of gray and white brain matter (C). (D) Using our image-based data processing
method (Fig. 1D), bitmap image-based fMRI data are loaded and thresholded to ensure imaging noise is eliminated. User-
defined colors are then placed at luminosity values to highlight variations in the intensity of the signal (E). (F) The fMRI
data are next overlaid on the T1 MRI (C), and background color data are superseded by that obtained from the fMRI. (G) A
vector-based diffusion tensor imaging tractography-based PLY model is loaded and deconstructed to extract color data from
its vertices. The PLY mesh is infilled with voxels, which inherit their colors from their nearest vertex (H). (I) The resulting
vector-based data are overlaid upon the composted image data (F) and again, the background color data are superseded by
that of the tractography data. ( J–L) 3D-printed examples resulting from this data compositing method, using only black,
white, and clear resins (J), or in full color (L) are shown along with magnified views to reveal additional detail (K). fMRI,
functional magnetic resonance imaging; MRI, magnetic resonance imaging.
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was first acquired from a Philips Medical Systems Ingenia
scanner. The T1 MRI images were loaded into the 3D Slicer
Medical Imaging Visualization13 platform to visualize the
data as a 3D volume rendering. A skull-stripping machine
learning-based algorithm was then employed to mask out
bone from the DICOM images to isolate only the brain
matter.30 The image stack resolution and slice thickness were
extracted from the T1 DICOM metadata, and a voxel-based
volume representation of the imaging data was created, de-
fining morphology and density values in 3D space.

To clearly visualize the intracranial anatomy, the MRI data
were then used to create a solid clear hull of zero thickness to
enclose the T1 detail volume of the brain, similar to the methods
described in Figure 5B. The T1 data were further enhanced
using window/level adjustments to emphasize/de-emphasize
specific features of interest and enhance changes in the density
of the neural anatomy. The grayscale intensity values of the data
were remapped to colors through lookup tables, which control
color mixing and opacity ratios, similar to those described by
Jacobson et al.11 Color and opacity were defined to allow for
visualization of brain tissue, while allowing for embedded
translucent objects of color to be visually coherent.

To efficiently slice through large numbers of tractography
curves, we divided the curves into line segments and used an
interval tree data structure to organize these segments and limit
the number of intersection calculations per slice. The interval
tree quickly retrieves all line segments that intersect a horizontal
slice, taking into account line color and thickness. Once em-
bedded within the brain voxel model, these curves can be
voxelized at print time, allowing for the creation of very fine
feature sizes throughout the volume, without the need to create
computationally and memory-intensive meshes, as would be
the case for an assembly of STL files. Once the curated T1 MRI,
fMRI, and DTI tractography data are composited into a single
digital model, and a blue noise error diffusion dither31–33 is
performed volumetrically to quantize the six different printable
resin colors (cyan, magenta, yellow, black, white, and clear)
from material density values for each voxel. The end result of
this multistep process is a quantized and dithered volume of
material values that are then rasterized to a 32-bit PNG file for
each printed layer, a description of which is shown in Figure 5.

Discussion

The widespread adoption of 3D-printed models for pre-
surgical planning has been a slow process, partly due to the
inability to capture fine detail and material gradients with
conventional surface mesh-based software data processing
methodologies. The limitations of mesh-based 3D modeling of
biological tissues have been widely documented and demon-
strate fundamental limitations related to the lack of accuracy,
complexity, and material gradients.25,34,35 In contrast, bitmap-
based 3D printing approaches have proven to outperform and
overcome many of these limitations for replicating patient-
specific anatomy from medical imaging data.36

This method thus presents a valuable alternative to current
practices by permitting the physicalization of anatomical and
physiological complexities. In addition to 3D printing a rep-
resentation of living tissue, which in contrast to conventional
STL-based methodologies, can capture all the signal intensity
gradients observed in traditional MRI and CT data sets; this
bitmap-based 3D printing approach can be rapidly adapted to

leverage the continually evolving range of available medical
imaging modalities. Furthermore, our method demonstrates a
significant improvement over traditional single data source-
based bitmap printing methods25 by fusing disparate multi-
modal imaging data types into a single intuitive model.

Lessons from case study 1: applications in cardiology

To demonstrate the value of our method for a cardiac ap-
plication, we used CMR imaging data from a pediatric patient
with tricuspid atresia, a rare congenital heart defect that af-
fects *1 in 10,000 births in the United States. During an
initial evaluation, and due to the very unusual orientation of
the patient’s aorta, it was suspected that blood flow through
the ventricles and into the aorta would be highly abnormal
and likely inefficient. To investigate this possibility, a 4D
flow MRI analysis modeling technique was used to derive
flow parameters, including measurements of wall shear
stress, pressure difference, turbulent kinetic energy, and in-
tracardiac flow components, and digital 3D anatomical and
hemodynamic models of the patient’s heart were created to
assist in further clinical planning.

From these analyses, the bitmap-printed 3D model of the
heart clearly illustrated the very unusual blood flow pathways
and provided comprehensive hemodynamic information at
each anatomical region during a single cardiac cycle. Further
analysis of the 3D-printed model confirmed that the child’s
pumping efficiency would likely be improved after the
Fontan procedure compared with patients with more typical
tricuspid atresia. This bitmap-printed 3D model of 4D flow
MRI analysis ultimately became part of the patient’s per-
manent medical record, and as such, will continue to provide
valuable information to direct future potential management
changes and therapeutic planning in this specific, and related
cases. Further clinical significance could be created by
combining 4D flow with additional cardiac data sources such
as shear wall stress and tissue compliance to provide a more
holistic anatomical guide for surgical planning.

Lessons from case study 2: applications
in neurosurgery

The need for neurosurgeons to better understand the
complex anatomy of the central nervous system is pushing
the use of hybrid models combining morphological infor-
mation from CT and MRI with physiological data from DWI,
DTI, and fMRI.37 The inclusion of physiopathological data
from advanced MRI sequences enables neurosurgeons to
quantify metabolic activity within a specific lesion or identify
a surgical pathway through complex neuroanatomical re-
gions before surgery or biopsy procedures.21

The patient from case study 2 was diagnosed with an
eloquent-area lesion centered in the Broca area. This brain
region is located in the inferior frontal gyrus of the dominant
cerebral hemisphere for language and is responsible for speech.
Resection of a Broca’s area tumor is a high-risk procedure
because of the anatomical complexity and critical functional-
ities of the surrounding soft tissue that must be considered.38

Our bitmap-based 3D print of this specific case, which visua-
lizes the tractography fibers (Fig. 6), depicts the arcuate fas-
ciculus, a white matter tract that connects the Broca area and
the Wernicke area in the brain. The Wernicke area is located in
the posterior superior temporal gyrus of the dominant
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hemisphere and is responsible for the decoding and compre-
hension of speech.

A patient with Wernicke’s aphasia is unable to under-
stand speech, and while they are able to produce speech, it
generally consists of intelligible words placed in an in-
comprehensible order. In contrast, those with damage to the
arcuate fasciculus experience a specific deficit called con-
duction aphasia. They retain the speech production ability
of Broca’s area and the language comprehension of Wer-
nicke’s area, but are unable to repeat new words, and often
make basic errors in pronunciation. The risk of damaging
this language processing area can lead to Broca’s aphasia,
which is an inability for a patient to speak, and has a quality-
of-life score on par with quadriplegia.39,40

Due to its local anatomical complexity and the large
number of adjacent tracts, the arcuate fasciculus is often
difficult to clearly visualize in relation to operative targets

using conventional 2D viewing methods. Furthermore,
function in Broca’s and Wernicke’s areas mapped via fMRI
is often challenging to co-register with the DTI data that
map the arcuate fasciculus due to the lack of available
landmarks. An accurate and intuitive representation of the
arcuate fasciculus in physical space relative to Broca’s and
Wernicke’s areas, and a surgical target, would therefore
greatly assist the surgeon in determining an operative
strategy.

By integrating all the imaging technologies that are re-
quired for the unambiguous visualization of different aspects
of cranial anatomy and physiology, our bitmap-based 3D-
printed models represent valuable presurgical planning
tools, enabling neurosurgeons to evaluate all the possible
surgical approaches to preserve patient function while
maximally reducing tumoral bulk, especially in deep brain
locations.15,20,41

FIG. 6. Representative 3D-printed models of multimodal medical data. (A, B) A bitmap-printed model of a pediatric
patient with a Broca’s area tumor is shown in green, fMRI data are shown in orange, and full-color tractography data from
the arcuate fasciculus, viewed from the left posterior (A) and from an axial cross-section through the corpus callosum (B).
(C) A representative slab of the same model, photographed with either reflected (left) or transmitted (right) illumination to
demonstrate variations in transparency and visual coherency of specific 3D features of interest (white matter, gray matter,
fMRI activity, tumor, and tractography data).
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Conclusions

With the methods described in the present study, we have
shown that a variety of multimodal and correlative compu-
tationally derived physiological data sets found in medical
imaging can be directly manufactured into physical models
using bitmap-based multimaterial 3D printing. These ap-
proaches offer an improvement over current single data
source bitmap-based 3D printing techniques and point toward
new design opportunities for which the perceived barriers
between the physiological and morphological domains can be
obviated with ease through the fabrication of intuitive data-
rich tangible objects. In the fields of electrode positioning for
brain stimulation or radiofrequency techniques, for example,
some authors have proposed the use of hybrid CT and MRI
models to confirm the correct location for electrodes in deep
brain stimulation, such as in treatments for Parkinson’s dis-
ease and numerous forms of epilepsy.42,43

Moreover, recent advancements on the materials devel-
opment front point to the opportunity for combining our data
compositing approaches with biomechanically accurate ma-
terial formulations for the production of tangible anatomical
models that mimic not only patient specific dynamic physi-
ology but also provide a mechanically informed haptic en-
gagement that mimics the functionally graded properties of
living tissue. As demonstrated here, the relationships be-
tween data visualization, computer science, digital fabrica-
tion, and medicine are fostering an information revolution
with the potential for increased communication, connectiv-
ity, and interoperability of data—bringing form and function
together to improve patient health.
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All data needed to evaluate the conclusions in the study are
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the authors.
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